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Closed and connected graphs of functions;

examples of connected punctiform spaces

Rozprawa doktorska

napisana pod kierunkiem

prof. dra hab. Micha la Morayne

Katowice 2008

1



Contents

Introduction 3

1 Introductory Remarks 5
1.1 Notation and Terminology . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Separation Axioms . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Connectedness and the T5 Separation Axiom . . . . . . . . . . . 6

2 Continuity of Functions In Terms of Connectedness 7
2.1 Connected and Locally Connected Graph . . . . . . . . . . . . . 8
2.2 Connected Graph with a Disconnected Complement . . . . . . . 10

3 Functions with Closed Connected Graphs 13

4 Punctiform Spaces as Connected Graphs of Functions 19
4.1 Functions with Connected Dense Graphs . . . . . . . . . . . . . . 20
4.2 A Nonseparably Connected Metric Space . . . . . . . . . . . . . 22
4.3 Products of Functions with Closed Connected Graphs . . . . . . 24
4.4 Completely Metrizable Connected Punctiform Space . . . . . . . 26
4.5 Extremal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 27

A Jelinek’s Discontinuous Function with Closed Connected Graph 32
A.1 Construction of The Graph . . . . . . . . . . . . . . . . . . . . . 32
A.2 The graph is closed . . . . . . . . . . . . . . . . . . . . . . . . . . 34
A.3 The graph is connected . . . . . . . . . . . . . . . . . . . . . . . 35
A.4 The graph is not arcwise connected . . . . . . . . . . . . . . . . . 37

Bibliography 39

2



Introduction

The basic intuition of a continuous function is a line drawn from left to right
without lifting one’s pen off the paper. In an attempt at capturing this intuition
with mathematical formalism, one may be tempted to think that being continu-
ous is the same as having a connected graph. However, there is a discontinuous
function ψ : [0, 1]→ R with a connected graph: ψ(x) = sin(1/x) and ψ(0) = 0,
which shows that the condition connected graph alone is not subtle enough to
capture our intuition. As we look at the graph of this function we notice that it
is not closed. Indeed, it turns out that the combination closed connected graph is
a characterization of continuity for functions from the line into locally compact
spaces — Corollary 19 in Chapter 3.

At this point there arises an intriguing question. Does a function f : R2 → R
with a closed connected graph have to be continuous? Although Jǐri Jelinek gave
a negative answer in [4], an interesting partial positive answer is the case when
connectedness of the graph follows from the assumption that all x-sections are
connected and one y-section is connected. This is the main result of Chapter 3
given as Theorem 21 and published in my joint paper with M. S. Wójcik [14].
(If X is locally connected, Y is connected and locally connected, Z is locally
compact, f : X × Y → Z has a closed graph with all x-sections continuous and
one y-section continuous, then f is continuous.) Chapter 3 contains also an
alternative version of the main result (X locally connected replaced with Y lo-
cally compact), Theorem 22 hitherto unpublished, and a considerably simplified
version of the original core technical lemma — Lemma 15.

In search of a characterization of continuity that would appeal to our visual
intuition of a continuously drawn line let us notice that if we are cutting across
a strip of paper with a pair of scissors, we are in fact creating a continuous
function: the trace of the scissors is the graph. After the whole graph is ”drawn”
we get two strips of paper: the set of points above the graph and the set of points
below the graph, which leads us to the discovery that the combination of the
graph is connected and the complement of the graph is disconnected characterizes
continuity for any real-valued function defined on a connected space — Corollary
10 in Chapter 2, published in my joint paper with M. S. Wójcik [15].

Coming back to the graph of our function ψ let us observe that it is not locally
connected. It turns out that a function from the real line into an arbitrary space
is continuous if and only if its graph is both connected and locally connected,
which is another characterization of continuity purely in terms of connectedness
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of the graph — Theorem 4 in Chapter 2, hitherto unpublished.
Suppose a continuous real-valued function on a connected space has a local

extremum at every point without knowing whether it is a maximum or a min-
imum. Does it have to be constant? In general the answer is negative because
there is a very nice, though nonmetrizable, connected space which admits such
a nonconstant function — Example 34. However, Theorem 36 in Chapter 4
states that in the realm of metric spaces the answer is positive for the class
of separably connected spaces, which includes all path connected spaces. (In
a separably connected space every two points can be contained in a separable
connected subset.)

It turns out that not all connected metric spaces are separably connected,
although such spaces are very hard to find. Besides the four examples known so
far, such a space can be constructed as a dense connected graph of a function
from the real line into a nonseparable normed vector space. In fact, we have dis-
covered a general method for producing dense connected graphs inside a broad
class of products X ×Y including any normed spaces X,Y of the cardinality of
the continuum — Theorem 26 in Chapter 4.

Although a complete connected metric space failing to be separably con-
nected has not been found, a complete punctiform space can be obtained as a
closed connected graph of a function from the real line — Theorem 33. (A punc-
tiform space contains no nontrivial connected compact subsets.) In Chapter 4
we also show that for a connected subset of the unit ball of a reflexive Banach
space its being closed in the weak topology implies being separably connected
in the weak topology — Theorem 29. The whole of Chapter 4 constitutes the
draft of my joint paper with M. Morayne [8].

In Jelinek’s article certain technical details were presented in a rather cur-
sory way keeping some researchers in suspense whether this problem has been
really solved, therefore in Appendix A we deliver a completely rewritten con-
struction of Jelinek’s function and a proof of its desired properties with all the
controversial details handled with painstaking care to remove any doubts that
Jelinek’s original construction is indeed correct.
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Chapter 1

Introductory Remarks

1.1 Notation and Terminology

We define extremal functions as real-valued functions defined on topological
spaces having a local extremum at every point (without knowing whether it
is a maximum or a minimum). A space is Baire if all of its nonempty open
subsets are second category. We define a space to be strongly Baire if all of
its closed subsets are Baire. A space is totally disconnected if singletons are
its only connected subsets. A space is punctiform if it does not contain any
nontrivial compact connected subsets. A space is separably connected if any
two of its points can be contained in a connected separable subset. A space
is nonseparably connected if it is connected and all of its nontrivial connected
subsets are nonseparable.

If E ⊂ X × Y then dom(E) is the projection of E onto X. We use both |X|
and card(X) to denote the cardinality of X. When card(X) = κ, we often say
that X has size κ or is of size κ. We denote the power set of X as P(X).

We often consider the graph of a function F : X → Y as a subset of the
topological space X ×Y or even as a topological space in its own right. For the
sake of convenience, we decided to use the capital letter F rather than the usual
f in order to be able to treat F as a subset of X × Y without having to write
Gr(f) or making any explanatory remarks on the spot. When we write that F is
connected, we mean that F is a connected subset of X×Y . Sometimes authors
write f is connected to mean that f maps connected sets onto connected sets
instead of the unambiguous f is Darboux, but we never do that.

LetX,Y be topological spaces. We say that f : X → Y is a Darboux function
if and only if f(E) is connected for every connected set E ⊂ X and f : X → Y
is a connectivity function if and only if the graph of f |E is connected for every
connected set E ⊂ X.
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1.2 Separation Axioms

Knowing that the definitions for separation axioms are not consistently used
throughout the literature, for the sake of precision we decided to include the
following definitions, which are equivalent with the ones given in [12].

Let X be a topological space. Then X is T1 if and only if all singletons are
closed; X is T3 if and only if for every point x ∈ X and every open set U ⊂ X
containing x there is an open set V ⊂ X such that x ∈ V ⊂ V ⊂ U ; and X is
T5 if and only if for any two sets A,B ⊂ X such that A∩B = A∩B = ∅, there
are two disjoint open sets U1, U2 ⊂ X such that A ⊂ U1 and B ⊂ U2.

Notice that being T3 or T5 does not imply being T1. Consider X = R × N
with open sets of the form U × N, where U is an open subset of R. Clearly X
is T3 and T5, but {(x, n)} = {x} × N, and thus no singleton is closed.

1.3 Connectedness and the T5 Separation Axiom

A topological space is disconnected if and only if it can be written as a union
of two disjoint nonempty open subsets. When we say that E is a disconnected
subset of the topological space X — by treating E as a topological space with
the induced topology containing those and only those sets which are of the
form E ∩ G where G is open in X — we obtain two open subsets U, V of X
giving us two relatively open subsets of E, namely E ∩U and E ∩ V , such that
E = (E∩U)∪ (E∩V ), E∩U 6= ∅ and E∩U 6= ∅ and finally the relatively open
sets are disjoint (E ∩ U) ∩ (E ∩ V ) = ∅. However, this does not imply that the
sets U, V can be chosen to be disjoint too, which may be essential for certain
arguments. But as long as the space X satisfies the T5 separation axiom, the
open sets U, V can be chosen to be disjoint. Fortunately, all metric spaces are
T5 — see [12].

6



Chapter 2

Continuity of Functions In
Terms of Connectedness of
The Graph

Let us take a look at the following function ψ : R→ R with a connected graph
and ask ourselves why it is not continuous.

ψ(x) =

{
sin(1/x) if x > 0,
0 if x ≤ 0.

As we look at the graph of this function, we notice that it is not closed. It turns
out that for functions f : R → Rn continuity is equivalent to the graph being
both connected and closed. However, the function f(cos(x), sin(x)) = 1/x for
x ∈ (0, 2π], defined on the unit circle, is discontinuous although its graph is
both closed and connected. There are also discontinuous functions g : R2 → R
and h : R→ l2 with closed connected graphs.

A second look at the graph of our function ψ reveals that it is not locally
connected. One of the results of this chapter is the observation that for functions
from the real line continuity can be characterized purely in terms of connected-
ness of the graph. Namely, a function f : R→ Y is continuous if and only if its
graph is both connected and locally connected.

A careful look at the function ψ reveals that the complement of its graph
is connected, while the complement of the graph of any continuous real-valued
function is always disconnected. This observation leads us to the second result of
this chapter, which is a characterization of continuity for real-valued functions in
terms of connectedness. Namely, a function f : X → R, defined on an arbitrary
connected space X, is continuous if and only if the graph is connected and its
complement is disconnected.

Unfortunately, the real line cannot be reasonably replaced with a more gen-
eral space in any of the two characterizations.
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2.1 Connected and Locally Connected Graph

In this section it is important to bear in mind that for functions f : R → Y
having a connected graph is equivalent to being a connectivity function.

Fact 1. Let Y be an arbitrary topological space. Let F : R → Y be a function
with a connected graph. Then F is a connectivity function.

In general, having a connected graph is powerless and almost irrelevant when
it comes to entailing connectivity. Looking at what happens at the point of
discontinuity of the function f(cos(x), sin(x)) = 1/x for x ∈ (0, 2π], defined on
the unit circle, serves to convince oneself that connectedness of the graph is far
from entailing the Darboux property, not to mention connectivity. Naturally,
every connectivity function is Darboux. However, our example (at the end of this
section) of a Darboux function f : (0,∞) → (0,∞) with a totally disconnected
graph shows all too clearly that the converse is not true.

Theorem 2. Let Y be an arbitrary topological space. Let F : R → Y be a
connectivity function. Suppose that F is locally connected at (x, F (x)). Then F
is continuous at x.

Proof. Take any open set V ⊂ Y containing F (x). Then there is a connected set
K ⊂ F∩(R×V ) such that (x, F (x)) ∈ IntF (K). Suppose thatK ⊂ (−∞, x]×Y .
Then the set {(x, F (x))} is relatively clopen in F |[x,∞), which is a connected set
since F is a connectivity function. This contradiction shows that b ∈ dom(K)
for some b > x. Similarly, a ∈ dom(K) for some a < x. Since dom(K) is
connected, the set U = (a, b) ⊂ K is a neighborhood of x with F (U) ⊂ V ,
which completes the proof that F is continuous at x.

Theorem 3. Let X be a locally connected space. Let Y be an arbitrary topo-
logical space. Let F : X → Y be a connectivity function, continuous at x. Then
F is locally connected at (x, F (x)).

Proof. Let E = B×U be an open set containing (x, F (x)). Since F is continuous
at x, there is an open set G ⊂ B such that x ∈ G and F (G) ⊂ U . Since X is
locally connected, G can be assumed to be connected. Since F is a connectivity
function, the set F |G is a connected relatively open subset of F contained in E,
which completes the proof.

Putting together Fact 1, Theorem 2, and Theorem 3 we obtain a character-
ization of continuity purely in terms of connectedness of the graph.

Theorem 4. Let Y be an arbitrary topological space. Let F : R → Y be a
function with a connected graph. Then F is continuous at x if and only if F is
locally connected at (x, F (x)).

It would be very hard to get rid of the real line as the domain of the function
for this characterization of continuity because of the following example.
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Example 5. There is a discontinuous function F : X → [0, 1] with a locally
arcwise connected graph such that F |G is arcwise connected for every open con-
nected set G ⊂ X, and X is a compact convex subset of the Euclidean plane,
thus locally connected (and as nice as can be).

Proof. Let X = {(x, y) : 0 ≤ x ≤ 1 ∧ 0 ≤ y ≤ x}. Let F : X → [0, 1] be given
by F (x, 0) = 0 and F (x, y) = 2xy/(x2 + y2) for y > 0. For every a ∈ [0, 1]
let Ka = {(x, ax) : x ∈ [0, 1]} ⊂ X. Then F (Ka) = {0, 2a/(1 + a2)}. Hence
F is not Darboux and F is discontinuous at (0, 0). However, if G is an open
connected subset of X, then F |G is connected. Indeed, if G ⊂ X \ {0, 0} then
F |G is connected because F |G is continuous, and if (0, 0) ∈ G then the set
F |G = {(0, 0, 0)} ∪ F |G\{(0,0)} is easily seen to be connected too. It remains
to show that F is locally connected at (0, 0, 0). Take any r > 0. Notice that
Br = {(x, y) ∈ X : x < r} is an open convex set containing (0, 0). Then
Fr = F ∩ (Br× [0, r)) is an open subset of F containing (0, 0, 0). We are done as
soon as we show that Fr is arcwise connected. Consider the auxiliary function
g : [0, 1]→ R given by g(a) = 2a/(1+a2). Notice that g(a) < r ⇐⇒ a < g−1(r).
Therefore F−1([0, r)) =

⋃
{Ka : 0 ≤ a < g−1(r)} is convex. Now, the set

dom(Fr) = F−1([0, r)) ∩ Br is convex, as the intersection of two convex sets.
Finally, we conclude that Fr is arcwise connected in the same way we argue
that the graph of a separately continuous function is arcwise connected.

In certain arguments, functions with connected graphs defined on the real
line can be replaced with Darboux functions, which is considerably weaker in
view of the following example.

Example 6. There is a Darboux function f : (0,∞) → (0,∞) whose graph is
totally disconnected.

Proof. In the first step, let us show that if E ⊂ (0,∞) has size c, then there is a
surjection f : E → (0,∞) such that f(x)/x 6∈ Q for every x ∈ E. Observe that
if E ⊂ (0,∞) is uncountable, then for every y ∈ (0,∞) there is an x ∈ E with
y/x 6∈ Q, because otherwise E would be countable. Let us well-order the set
(0,∞) = {yα : α < c}. We will be constructing one by one points (xα, f(xα))
of the graph by transfinite induction over α < c. For y0 choose some x0 ∈ E
with y0/x0 6∈ Q and put f(x0) = y0. Now, for some ordinal β < c, the set
E \ {xα : α < β} is of size c, so we can choose some xβ ∈ E \ {xα : α < β}
with yβ/xβ 6∈ Q and put f(xβ) = yβ . Should the set E \ {xα : α < c} remain
nonempty after this construction is completed, put f(x) =

√
2 if x ∈ Q and

f(x) = 1 otherwise.
Let {(an, bn) : n ∈ N} be a basis for the topology of (0,∞). Let C1 be a

Cantor set embedded in the open interval (a1, b1). Let f : C1 → (0,∞) be a
surjection such that f(x)/x 6∈ Q for every x ∈ C1. Now, for n + 1 ∈ N, the
set (an+1, bn+1) \

⋃n
k+1 Ck contains an interval (c, d) because a finite union of

Cantor sets is nowhere dense. Let Cn+1 be a Cantor set embedded in (c, d) and
let f : Cn+1 → (0,∞) be a surjection such that f(x)/x 6∈ Q for every x ∈ Cn+1.
After this construction is completed, for the remaining set (0,∞)\

⋃
n∈N Cn put

f(x) =
√

2 if x ∈ Q and f(x) = 1 otherwise.
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Clearly, the function f : (0,∞) → (0,∞) is Darboux, because f([a, b]) =
(0,∞) for any 0 < a < b. It remains to show that its graph does not contain
any connected sets with more than one point. Let E be an arbitrary subset of the
graph containing two distinct points. For some (a, f(a)) ∈ E let α = f(a)/a.
If E is contained in the line y = αx, it cannot be connected because then f
would be continuous on some interval. Otherwise there is some (b, f(b)) ∈ E
with β = f(b)/b, α 6= β. Choose a rational number γ between α and β. Now,
the line y = γx separates E. So we showed that the graph of f is totally
disconnected.

Now that we are sensitive to the difference between a connectivity function
and a Darboux function, let us consider an alternative version of Theorem 2,
where the connectivity function is replaced with a Darboux function at the cost
of requiring Y to be a T3 space.

Theorem 7. Let Y be a T3 space. Let F : R→ Y be a Darboux function. If F
is locally connected at (x0, F (x0)), then F is continuous at x0.

Proof. Take any open set U ⊂ Y containing F (x0). Since F is locally con-
nected at (x0, F (x0)), there is a connected set K ⊂ F such that (x0, F (x0)) ∈
IntF (K) ⊂ K ⊂ R× U . Hence, since Y is T3, there is an open set V ⊂ Y such
that F (x0) ∈ V ⊂ V ⊂ U and a radius r > 0 such that F∩((x0−r, x0+r)×V ) ⊂
K. Suppose that (x, F (x)) 6∈ K for all x ∈ (x0, x0 + r). Then F ((x0, x0 + r)) ⊂
Y \ V . Since F is a Darboux function, the set A = F ([x0, x0 + r)) is connected
and covered by the union of two disjoint open sets V ∪ (Y \ V ), each of them
intersecting A. This contradiction shows that there is a point b ∈ (x0, x0 + r)
such that b ∈ dom(K). Since the projection dom(K) is an interval, it contains
[x0, b]. Similarly, there exists a point a ∈ (x0−r, x0) such that [a, x0] ⊂ dom(K).
So, x0 ∈ (a, b) ⊂ dom(K) and F ((a, b)) ⊂ U , which finishes the argument that
F is continuous at x0.

2.2 Connected Graph with a Disconnected Com-
plement

The main theorem in this section relies on the following folklore lemma, which
deserves much interest for its own sake. It characterizes continuity by saying
that f : X → R is continuous if and only if the set of points above the graph is
open and the set of points below the graph is open.

Lemma 8. Let X be a topological space and f : X → R. Then f is upper
semicontinuous if and only if the set A = {(x, y) : f(x) < y} is open in X × R.
Similarly, f is lower semicontinuous if and only if the set B = {(x, y) : f(x) > y}
is open in X × R. Consequently, f is continuous if and only if the sets A and
B are open.

The proof of this lemma is elementary. The main theorem is given below.
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Theorem 9. If X is a topological space, f : X → R, Gr(f) is connected, and
(X × R) \Gr(f) is disconnected then f is continuous.

Proof. Since (X ×R) \Gr(f) is disconnected, there exist two open sets A,B ⊂
X×R such that (X×R)\Gr(f) ⊂ A∪B, A∩B \Gr(f) = ∅, A\Gr(f) 6= ∅, and
B \ Gr(f) 6= ∅. Notice that A ∩ B ⊂ Gr(f). Hence A ∩ B ⊂ Int(Gr(f)) = ∅.
Furthermore, since A,B are disjoint open sets, we have that A∩B = A∩B = ∅.
Using this and (X × R) \ Gr(f) ⊂ A ∪ B we get that A \ Gr(f) ⊂ A and
B \ Gr(f) ⊂ B. Since the sets {x} × (f(x),∞) and {x} × (−∞, f(x)) are
connected and contained in the complement of the graph and A,B are disjoint
open sets whose union covers the complement of the graph, we have the following
four easy consequences:

(i) (x, f(x) + 1) ∈ A =⇒ {x} × (f(x),∞) ⊂ A

(ii) (x, f(x) + 1) ∈ B =⇒ {x} × (f(x),∞) ⊂ B

(iii) (x, f(x)− 1) ∈ A =⇒ {x} × (−∞, f(x)) ⊂ A

(iv) (x, f(x)− 1) ∈ B =⇒ {x} × (−∞, f(x)) ⊂ B.

For K,L ∈ {A,B}, let GK
L = {(x, f(x)) : (x, f(x) + 1) ∈ K ∧ (x, f(x) − 1) ∈

L}. Notice that since A,B are disjoint, the sets GA
A, G

A
B , G

B
A , G

B
B are pairwise

disjoint, and since A and B cover the complement of the graph, we have that
Gr(f) = GA

A ∪ GA
B ∪ GB

A ∪ GB
B . We are going to show that these four sets are

closed subsets of the graph, which — since the graph is connected — implies
that three of them are empty and one of them is the whole graph. Take any net
(xt, f(xt)) contained in GK

L and converging to (x, f(x)). Since (xt, f(xt) + 1) ∈
K, (x, f(x) + 1) ∈ K \ Gr(f) ⊂ K, and similarly since (xt, f(xt) − 1) ∈ L,
(x, f(x)− 1) ∈ L \Gr(f) ⊂ L. Hence (x, f(x)) ∈ GK

L , which shows that the set
GK

L is closed. Knowing that the whole graph is equal to one of these four sets
and recalling that A \ Gr(f) 6= ∅ and B \ Gr(f) 6= ∅, we conclude that either
Gr(f) = GA

B or Gr(f) = GB
A . Without loss of generality we may assume that

Gr(f) = GA
B . It is now easy to notice that

{(x, y) : f(x) < y} ⊂ A,

{(x, y) : f(x) > y} ⊂ B.

Next, we are going to show that A∩Gr(f) = ∅ and B∩Gr(f) = ∅. Suppose we
have (x, f(x)) ∈ A ∩Gr(f). Since A is open, there exist two open sets U ⊂ X
and V ⊂ R such that (x, f(x)) ∈ U × V ⊂ A. Hence there exists an ε > 0 such
that (x, f(x)− ε) ∈ A but (x, f(x)− ε) ∈ B and A∩B = ∅. This contradiction
shows that A ∩Gr(f) = ∅ and analogously B ∩Gr(f) = ∅. Thus we have

{(x, y) : f(x) < y} = A,

{(x, y) : f(x) > y} = B,

and since A,B are open, Lemma 8 implies that our function is continuous.
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Corollary 10. Let X be a connected space and f : X → R. Then f is contin-
uous if and only if Gr(f) is connected and (X × R) \Gr(f) is disconnected.

Proof. If Gr(f) is connected and (X × R) \ Gr(f) is disconnected, then f is
continuous by Theorem 9. Now, if f is continuous, then Gr(f) is homeomorphic
with X via Θ(x, f(x)) = x. Hence, since X is connected, Gr(f) is connected.
Using Lemma 8 we show that A = {(x, y) : f(x) < y} and B = {(x, y) : f(x) >
y} are disjoint open sets covering the complement of the graph, hence (X×R)\
Gr(f) is disconnected.

It is essential that R should be the range of the function for this character-
ization of continuity because the fact that the complement of the graph of a
continuous real-valued function is disconnected follows from the following prop-
erty of the real line — it becomes disconnected if you take away one point. It
makes no sense to replace R with a multi-dimensional vector space because for
any space Y such that it is still connected after removing any of its points the
complement of the graph of any function f : X → Y (not necessarily continuous)
is connected.

Theorem 11. If X is a connected space, Y is a topological space such that for
every y ∈ Y the set Y \ {y} is connected and has at least two elements, and
f : X → Y is an arbitrary function, then (X × Y ) \Gr(f) is connected.

Proof. Take any open sets A,B ⊂ X × Y such that (X × Y ) \Gr(f) ⊂ A ∪B,
A∩B \Gr(f) = ∅, and A \Gr(f) 6= ∅. Now, if we show that B \Gr(f) = ∅, we
have proved that (X × Y ) \Gr(f) is connected.

Using the fact that the sets {x} × (Y \ {f(x)}) are connected we obtain the
following two easy consequences:

(i) (x, y) ∈ A \Gr(f) =⇒ {x} × (Y \ {f(x)}) ⊂ A

(ii) (x, y) ∈ B \Gr(f) =⇒ {x} × (Y \ {f(x)}) ⊂ B.

Let E = {x ∈ X : {x} × (Y \ {f(x)}) ⊂ A}. Recalling that A \ Gr(f) 6= ∅
and keeping (i) in mind, we conclude that E is not empty. We are going to
show that E is closed. Suppose that E is not closed. Then there exists a
point x ∈ E \ E. Since x 6∈ E — keeping (ii) in mind — we conclude that
{x} × (Y \ {f(x)}) ⊂ B. There exist two distinct points y1, y2 ∈ Y such
that f(x) 6= y1 and f(x) 6= y2. Notice that (x, y1) ∈ B and (x, y2) ∈ B.
Since B is open, there exist open sets U1, U2 ⊂ X and V1, V2 ⊂ Y such that
(x, y1) ∈ U1 × V1 ⊂ B and (x, y2) ∈ U2 × V2 ⊂ B. Since x ∈ U1 ∩ U2 ∩ E,
there exists a point a ∈ U1 ∩ U2 ∩ E. Since f is a function, either f(a) 6= y1
or f(a) 6= y2. So, f(a) 6= yi for some i ∈ {1, 2}. Since a ∈ E, (a, yi) ∈ A. But
(a, yi) ∈ Ui × Vi ⊂ B. So (a, yi) belongs to the empty set A ∩ B \Gr(f). This
contradiction shows that E is closed.

Similarly, we show that F = {x ∈ X : {x} × (Y \ {f(x)}) ⊂ B} is closed.
Then X = E ∪ F while E,F are closed and disjoint. Since X is connected and
E is not empty, F must be empty. This shows that (X×Y )\Gr(f) ⊂ A. Hence
B \Gr(f) = ∅, which concludes the proof.
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Chapter 3

Functions with Closed
Connected Graphs

In this chapter we prove that a function f : R→ Rn is continuous if and only if
its graph is closed and connected and give an example of a discontinuous func-
tion f : R → l2 with a closed connected graph. At this point it is interesting
to ask whether a function f : R2 → R with a closed connected graph has to be
continuous. We give a positive answer in the very special case when connected-
ness of the graph follows from the assumption that all x-sections are continuous
and one y-section is continuous. A negative answer was given by Jelinek — see
Appendix A.

The following three theorems are known folklore results showing the basic prop-
erties of functions with closed graphs into spaces with appropriate compactness
properties.

Theorem 12. If X,Y are topological spaces, f : X → Y , Gr(f) is closed,
E ⊂ Y , and E is compact, then f−1(E) is closed.

Proof. Take any x0 ∈ f−1(E). We have a net (xt)t∈Π in f−1(E) which con-
verges to x0. Notice that (f(xt))t∈Π is a net in the compact set E. Hence
we get a subnet (f(xα(s)))s∈Π0 which converges to some y0 ∈ E. Notice that
(xα(s), f(xα(s))) → (x0, y0). Since Gr(f) is closed, f(x0) = y0. So f(x0) ∈ E,
and x0 ∈ f−1(E). We showed that f−1(E) ⊂ f−1(E), so f−1(E) is closed.

Theorem 13. If X is a topological space, Y is a compact space, f : X → Y ,
and Gr(f) is closed, then f is continuous.

Proof. Take any closed set E ⊂ Y . Since Y is a compact space, E is compact.
By Theorem 12, f−1(E) is closed. We showed that f is continuous.

Theorem 14. If X is a topological space, Y is a locally compact space, f : X →
Y , and Gr(f) is closed, then W = {x ∈ X : f is continuous at x} is open.
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Proof. Take any x0 ∈ W . Since Y is locally compact, we have an open set
U ⊂ Y such that f(x0) ∈ U and U is compact. Since f is continuous at x0, we
have an open G ⊂ X such that x0 ∈ G and f(G) ⊂ U . Notice that f |G : G→ U
and Gr(f |G) is closed in G× U . By Theorem 13, f |G is continuous. Since G is
open, f is continuous on G. Hence G ⊂ W , and so x0 ∈ Int(W ). We showed
that W ⊂ Int(W ), so W is open.

The following technical lemma is so far the most general and efficient tool
for deriving the continuity of a function with a closed graph coupled with an
appropriate connectedness condition.

Lemma 15. Let X be a topological space. Let Y be a locally compact space.
Let x0 ∈ A ⊂ X. Suppose that f : X → Y has a closed graph and f |A is
continuous at x0. Suppose that for every neighborhood G of x0 there is a smaller
neighborhood G′ of x0 such that for every z ∈ G′ there is a set E ⊂ G containing
z such that E ∩A 6= ∅ and f(E) is connected. Then f is continuous at x0.

Proof. Since Y is locally compact at f(x0), there is an open set U0 ⊂ Y such that
f(x0) ∈ U0 and U0 is compact. Take any open set U such that f(x0) ∈ U ⊂ U0.
Since f has a closed graph and U \ U is compact, by Theorem 12, there is a
neighborhood G1 of x0 such that f(G1)∩(U \U) = ∅. Since f |A is continuous at
x0, there is a neighborhood G2 of x0 such that f(G2∩A) ⊂ U . Let G = G1∩G2.
Then there is a neighborhood G′ ⊂ G of x0 with the properties postulated in
the last assumption. Take any z ∈ G′. Then z ∈ E ⊂ G, a ∈ E ∩A and f(E) is
connected. Since E ⊂ G1, we can write f(E) ⊂ U ∪ (Y \U), which is a covering
of a connected set by two disjoint open sets. Since a ∈ A∩E ⊂ A∩G ⊂ A∩G2,
f(a) ∈ f(E) ∩ U . So f(E) ⊂ U and consequently f(z) ∈ U . Thus we showed
that f(G′) ⊂ U , which completes the proof that f is continuous at x0.

A straightforward application of the previous highly technical lemma yields
a series of corollaries.

Corollary 16. If X is a topological space, Y is a locally connected space, Z is
a locally compact space, f : X × Y → Z, Gr(f) is closed, y0 ∈ Y ,
(1) the mapping Y 3 y 7→ f(x, y) ∈ Z is Darboux for all x ∈ X,
(2) the mapping X 3 x 7→ f(x, y0) ∈ Z is continuous,
then f is continuous at (x0, y0) for all x0 ∈ X.

Proof. Take any x0 ∈ X. We are preparing to apply Lemma 15. Let A =
X × {y0}. By (2), f |A is continuous at (x0, y0). Take any open sets U and V
such that (x0, y0) ∈ U × V . Since Y is locally connected, there is a connected
neighborhood K of y0 with K ⊂ V . Let G′ = U × Int(K). Take any v =
(x, y) ∈ G′. Let E = {x} ×K. By (1), f(E) is connected. Notice that v ∈ E
and (x, y0) ∈ E ∩ A. Now, ready to apply Lemma 15, we conclude that f is
continuous at (x0, y0). Since x0 ∈ X was arbitrary, the proof is complete.

The following corollary is a previously known result [9].
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Corollary 17. If X is a topological space, Y is a locally connected space, Z is
a locally compact space, f : X × Y → Z has a closed graph,
(1) the mapping Y 3 y 7→ f(x, y) ∈ Z is Darboux for every x ∈ X,
(2) the mapping X 3 x 7→ f(x, y) ∈ Z is continuous for every y ∈ Y ,
then f is continuous.

By taking a singleton for X in the previous corollary, we obtain the simplest
theorem about a Darboux function with a closed graph.

Corollary 18. If Y is a locally connected space, Z is a locally compact space,
f : Y → Z is a Darboux function with a closed graph, then f is continuous.

Calling to mind the fact that a function f : R→ Y with a connected graph
has to be Darboux, we obtain the previously announced characterization of
continuity in terms of properties of the graph.

Corollary 19. If Y is a locally compact space and f : R → Y has a closed
connected graph then f is continuous.

The following example shows that it is essential that Y should be locally
compact in Corollary 18.

Example 20. There exists a discontinuous function f : [0, 1]→ l2 with a closed
connected graph.

Proof. Let Y = l2. Let (xn)n∈N be a strictly decreasing sequence of positive
numbers such that

{xn : n ∈ N} = {x ∈ (0, 1] : sin(
π

x
) = 0}.

It follows that x1 = 1. Let us define our function f : [0, 1] → Y . Let f(0) =
(0, 0, 0, ...) ∈ Y . Take any x ∈ (0, 1] = (0, x1]. There is a unique n ∈ N such
that xn+1 < x ≤ xn. For each k ∈ N define

f(x)(k) =

{
sin(π

x ) if k = n,

0 if k 6= n.

Since f(x) is an element of Y , our function f has been defined. It is easy to
see that f |[xn+1,xn] is continuous for every n ∈ N. Hence f |[xn+1,1] is continuous
for every n ∈ N, which means that f is continuous for every x ∈ (0, 1]. Since
(xn, f(xn)) = (xn, (0, 0, 0, ...)) = (xn, f(0)) → (0, f(0)) as n → ∞, we conclude
that f has a connected graph.

Let (an)n∈N be a strictly decreasing sequence of positive numbers such that

{an : n ∈ N} = {x ∈ (0, 1] : sin(
π

x
) = 1}.

Take any n ∈ N. Choose k ∈ N so that xk+1 < an < xk. Thus f(an)(k) =
sin( π

an
) = 1 and so ‖f(an)‖ = 1 for every n ∈ N, which means that f is

discontinuous at 0.
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It remains to show that f has a closed graph. Take any sequence (zn)n∈N
converging to 0 such that f(zn)n∈N converges to some point y ∈ Y . We will
show that y = (0, 0, 0, ...) = f(0). Take any k ∈ N. Take any ε > 0. Since
‖f(zn)− y‖ → 0 as n→∞, there is an n0 ∈ N such that

|f(zn)(k)− y(k)| ≤ ε

for every n ≥ n0. Choose an n ∈ N so that n > n0 and zn < xk+1. Then
f(zn)(k) = 0. So |y(k)| ≤ ε for every ε > 0, and consequently y(k) = 0 for
every k ∈ N. This shows that the graph of f is closed.

Piotrowski and Wingler noticed that a separately continuous function f : R×
R→ R with a closed graph has to be continuous — see [9]. The exact statement
of their theorem is our Corollary 17. However, the assumption of separate
continuity can be considerably weakened and replaced by requiring that all x-
sections are continuous and at least one y-section is continuous. We have even
two ways of proving this in a general topological setting. In both cases we
assume that we have a function f : X × Y → Z with a closed graph into a
locally compact space Z whose all x-sections are continuous and at least one
y-sections is continuous, with Y being connected and locally connected. In the
first theorem we require additionally that X be locally connected and in the
second theorem we require nothing of X while demanding local compactness
from Y .

We can easily see that the condition Z is locally compact is essential by
taking Z = R × R with the river metric and f : R × R → Z simply given by
f(x, y) = (x, y) ∈ Z. Then all x-sections are continuous and exactly one y-
section is continuous and the graph is closed because the inverse function is
continuous. Moreover, the set of continuity points is R×{0}, which is not open,
showing that local compactness is essential in Theorem 14.

Theorem 21. If X is a locally connected space, Y is a connected and locally
connected space, Z is a locally compact space, f : X × Y → Z, Gr(f) is closed,
(1) the mapping Y 3 y 7→ f(x, y) ∈ Z is continuous for all x ∈ X,
(2) the mapping X 3 x 7→ f(x, y) ∈ Z is continuous for some y ∈ Y
then f is continuous.

Proof. Let W = {(x, y) ∈ X × Y : f is continuous at (x, y)}. By Theorem 14,
W is open. Take any x0 ∈ X. Let D = {y ∈ Y : f is continuous at (x0, y)}.
Notice that D is open in Y because W is open in X × Y . We will show that D
is closed in Y . Take any y0 ∈ D. Let Π = {U ⊂ X × Y : (x0, y0) ∈ U and U is
open}. Let P = {E ⊂ X × Y : f(E) is connected}. Let A = {(x0, y) : y ∈ Y }.
Take any U ∈ Π. We have open sets GX ⊂ X, GY ⊂ Y such that (x0, y0) ∈
GX ×GY ⊂ U . Since Y is locally connected, we have a connected set K ⊂ GY

such that y0 ∈ Int(K). Since y0 ∈ D, we can choose a y′ ∈ Int(K) ∩D. Since
y′ ∈ D, (x0, y

′) ∈ W . Since W is open, we have an open set V ⊂ X × Y such
that (x0, y

′) ∈ V and f is continuous on V . Now, we have open sets VX ⊂ X,
VY ⊂ Y such that (x0, y

′) ∈ VX × VY ⊂ V ∩ (GX × Int(K)). Since X is locally
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connected, we have a connected set TX ⊂ VX such that x0 ∈ Int(TX). Since Y
is locally connected, we have a connected set TY ⊂ VY such that y′ ∈ Int(TY ).
Let G = Int(TX) × Int(K). G ∈ Π because x0 ∈ Int(TX) and y0 ∈ Int(K).
Take any g = (v, z) ∈ G. Let E = TX × TY ∪ {v} × K. We will show that
E ∈ P . Notice that TY ⊂ K and v ∈ TX . So TX × TY ∩ {v} ×K 6= ∅. Hence
f(TX × TY ) ∩ f({v} ×K) 6= ∅. Now, TX × TY is connected and contained in
V . Since f is continuous on V , f(TX × TY ) is connected. By (1), f({v} ×K)
is connected. Notice that f(E) = f(TX × TY ) ∪ f({v} × K). Hence f(E) is
connected. So E ∈ P . Notice that (v, z) ∈ E. Notice that E ⊂ U . We have
(x0, y

′) ∈ TX × TY ⊂ E and (x0, y
′) ∈ A. So E ∩A 6= ∅. We showed that

∀U∈Π∃G∈Π∀g∈G∃E∈P g ∈ E ∧ E ⊂ U ∧ E ∩A 6= ∅.

By (1), f |A is continuous at (x0, y0). By Lemma 15, f is continuous at (x0, y0).
So y0 ∈ D. We showed thatD ⊂ D. SoD is closed in Y . SoD is open and closed
in Y . By (2), we have a y ∈ Y such that the mapping X 3 x 7→ f(x, y) ∈ Z
is continuous. By Corollary 16, we conclude that f is continuous at (x0, y). So
y ∈ D and D 6= ∅. Since Y is connected, D = Y . Hence f is continuous at
(x0, y) for all y ∈ Y . But x0 ∈ X was arbitrary. Thus f is continuous, and the
proof is complete.

Theorem 22. If X is a topological space, Y is a connected, locally connected,
locally compact space, Z is a locally compact space, f : X × Y → Z has a closed
graph,
(1) the mapping Y 3 y 7→ f(x0, y) ∈ Z is Darboux for each x0 ∈ X,
(2) the mapping X 3 x 7→ f(x, y1) ∈ Z is continuous for some y1 ∈ Y ,
then f is continuous.

Proof. By Corollary 18, we can strengthen (1) so that the mapping Y 3 y 7→
f(x0, y) ∈ Z is continuous for each x0 ∈ X, rather than Darboux, which will be
used to map compact subsets of Y onto compact subsets of Z.

Take any x0 ∈ X. Let D = {y ∈ Y : f is continuous at (x0, y)}. By Theorem
14, D is open and by Corollary 16, y1 ∈ D. Since Y is connected, we are done
as soon as we show that D is closed. Let us take y0 ∈ D \D and the proof will
be finished as soon as we reach a contradiction. Since Y is locally connected
and locally compact, there is a connected and compact neighborhood K of y0.
Let E = f({x0} × K). By the strengthened version of (1), E is compact.
Since Z is locally compact, we can obtain a closed compact set M such that
E ⊂ Int(M). Since y0 ∈ D, there is a point y′ ∈ D ∩ Int(K). Now, (x0, y

′)
is a point of continuity with f(x0, y

′) ∈ Int(M), so there is a neighborhood G
of x0 such that f(x, y′) ∈ Int(M) for every x ∈ G. Since (x0, y0) is a point of
discontinuity, due to Theorem 13, there is no neighborhood U of (x0, y0) with
f(U) ⊂ M . So there is a net (xt, yt) converging to (x0, y0) such that xt ∈ G,
yt ∈ Int(K) and f(xt, yt) ∈ Z \M , and consequently f(xt, y

′) ∈ Int(M). By
(1), the sets f({xt} × K) are connected. Since each of them intersects both
Z \M and Int(M), there are points y′t ∈ K such that f(xt, y

′
t) ∈M \ Int(M).

Since K is compact, there is a subnet y′α(s) converging to some point y′′ ∈ K.
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Now, the net zs = f(xα(s), y
′
α(s)) is contained in the compact set M \ Int(M),

and so there is another subnet zβ(w) converging to some point z0 ∈M \Int(M).
Since the graph of f is closed, f(x0, y

′′) = z0 ∈ f({x0} ×K) = E ⊂ Int(M),
showing that z0 ∈ Int(M), which contradicts with z0 ∈M \ Int(M).
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Chapter 4

Punctiform Spaces as
Connected Graphs of
Functions

A topological space is called separably connected if any two of its points can be
contained in a connected separable subset. Clearly, this is a generalization of
path connectedness. This concept arises naturally in the course of investigating
the question whether a continuous real-valued function from a connected space
having a local extremum everywhere has to be constant. A partial positive
answer is given for separably connected metric spaces.

There are easy and natural examples of nonmetrizable connected spaces
which are not separably connected. However, connected metric spaces, which
are not separably connected, are hard to find. There are four examples of such
spaces in the literature — see [10], [11], [2] — and we have constructed one more
example by using a method which turns out to have much broader applications.
In fact, we discovered a certain way of constructing functions with connected
dense graphs inside a broad class of product spaces.

Our construction is based on two ideas. Firstly, it is inspired by Bernstein’s
Connected Sets — see [12] for details. Secondly, our space is defined as a function
from the real line whose graph is a connected dense subset of a nonseparable
metric space. Consequently, our space does not contain any nontrivial connected
separable subsets and is not locally connected at any point.

It is still an open question whether there exists a complete connected metric
space which fails to be separably connected. However, we obtained a complete
connected punctiform metric space as a closed connected graph of a function
from the real line into a complete metric space. (A punctiform space contains
no nontrivial compact connected subsets.)
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4.1 Functions with Connected Dense Graphs

Our method for producing a connected, not separably connected metric space
is in fact a tool for constructing a function f : X → Y with a connected dense
graph for a broad class of products X ×Y , including any normed spaces X and
Y of size c, in which case such a function may be required to satisfy Cauchy’s
equation f(x + u) = f(x) + f(u). See Kulpa’s paper [5] for other results of
this kind. There is an old classical construction due to Leopold Vietoris of a
function f : [0, 1]→ [0, 1] with a connected dense graph, [13].

The following technical lemmas are painstakingly written so as to first of all
reveal all the details that are essential for our construction of a connected, not
separably connected metric space, and secondly get rid of all the details which
have no significance for the construction.

Lemma 23. Let X,Y and H ⊂ P(X×Y ) be arbitrary sets such that |dom(K)| ≥
|H| for every K ∈ H. Then there exists a function f : X → Y which intersects
every member of the family H.

Proof. Let the ordinal Γ = card(H) be used to well-order the family H =
{Kα : α < Γ}. We will be constructing the desired function by producing one
by one elements of its graph (xα, f(xα)) by transfinite induction over α < Γ. In
the first step, pick some (x0, f(x0)) ∈ K0. Now, given an ordinal β < Γ, notice
that the set dom(Kβ) \ {xα : α < β} is not empty because of our cardinality
constraint. So we can safely choose some xβ and some corresponding f(xβ)
with (xβ , f(xβ)) ∈ Kβ . Should the set X \ {xα : α < Γ} remain nonempty, fill
the graph of our function in an arbitrary way just to extend the domain to the
whole X.

It is worth noting that in the following lemma Y is assumed to be separa-
bly connected, which is a nice advertisement for this little known topological
property.

Lemma 24. Let X be a connected space of size κ whose each nonempty open
subset contains a closed separable set of size κ. Let Y be a separably connected T1

space. Suppose that X×Y is a T5 space whose separable subsets are hereditarily
separable. Let H be the family of all closed separable subsets of X × Y whose
projection on X has size κ. Let the function F : X → Y intersect every member
of H. Then the graph of F is connected and dense in X × Y .

Proof. To see that F is dense notice that it intersects every set of the form
E × {y} — where E is a closed separable set of size κ — which is a set in H to
be found in every nonempty open subset of X × Y .

Suppose that F is disconnected. Since X × Y is T5, there are two disjoint
open sets U, V ⊂ X × Y such that F ⊂ U ∪ V , F ∩ U 6= ∅, F ∩ V 6= ∅. Let
A = dom(U) and B = dom(V ). These sets, as projections of open sets, are
open in X. Since F is a function with domain X, for every x ∈ X there is a
y ∈ Y with (x, y) ∈ F ⊂ U ∪ V , and thus X = A ∪ B. Since F ∩ U 6= ∅, A
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is nonempty. Similarly, B is nonempty. Since X is connected it follows that
A ∩ B is nonempty. Hence there is a point x0 ∈ X and two points y1, y2 ∈ Y
with (x0, y1) ∈ U and (x0, y2) ∈ V . Since U, V are open, there is an open set G
containing x0 such that G×{y1} ⊂ U and G×{y2} ⊂ V . By assumption, there
is a closed separable set E ⊂ G of size κ. Since Y is separably connected, there is
a closed connected separable set W ⊂ Y containing both y1 and y2. Notice that
the set K = (E ×W ) \ (U ∪ V ) is closed and separable in X × Y . To show that
E ⊂ dom(K) take any x ∈ E. Since (x, y1) ∈ U and (x, y2) ∈ V , the connected
set {x} ×W intersects both U and V , which are disjoint open sets, hence it
cannot be covered by their union. Thus (x, y) ∈ ({x} ×W ) \ (U ∪ V ) ⊂ K for
some y ∈ Y ensuring that x ∈ dom(K). We showed that dom(K) contains the
set E of size κ. Thus K ∈ H and by assumption F ∩K 6= ∅. But F ∩K = ∅.
This contradiction shows that F is connected.

Recall that every separable metric space can be embedded in the Hilbert
cube [0, 1]N with the product metric, which has size c. It is interesting to realize
that there is also a similar constraint on the cardinality of Hausdorff separable
spaces, which cannot exceed 2c — see [12] at the end of section Compactness
Properties and the Ti axioms.

Lemma 25. Let Z be an arbitrary topological space. Let H be the family of all
closed separable subsets of Z. Then |H| ≤ |Z|ℵ0 .

Proof. Let A,B be two distinct closed separable subsets of Z. Then there are
two sequences a, b ∈ ZN such that a(N) = A and b(N) = B. Since A 6= B, it
follows that a 6= b. This means that to each closed separable set we can assign
a unique element of ZN, which completes the argument.

The following theorem yields the existence of functions F : X → Y with
connected dense graphs inside a broad class of products X × Y .

Theorem 26. Let X be a connected space whose each nonempty open subset
contains a closed separable set of size c. Let Y be a separably connected space.
Suppose that X×Y is a T5 space of size c whose separable subsets are hereditarily
separable. Then there exists a function F : X → Y whose graph is connected
and dense in X × Y .

Proof. Let H be the family of all closed and separable subsets of X × Y whose
projection on X has size c. By Lemma 25, |H| ≤ cℵ0 = c. Thus X,Y,H satisfy
the assumptions of Lemma 23. So there exists a function F : X → Y which
intersects every member of H. By Lemma 24, the graph of F is connected and
dense in X × Y .

In the next theorem we show that if X,Y are normed spaces, F may satisfy
Cauchy’s equation.

Theorem 27. Let X, Y be normed spaces of size c. Then there exists a function
F : X → Y satisfying F (x + u) = F (x) + F (u) for all x, u ∈ X whose graph is
connected and dense in X × Y .
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Proof. Let H be the family of all closed and separable subsets of X × Y whose
projection on X has size c. By Lemma 25, |H| ≤ cℵ0 = c. If E ⊂ X then
let spanQ(E) = {Σn

i=1aixi : ai ∈ Q, xi ∈ E, i ∈ [1, n] ∩ N, n ∈ N}. Notice
that |E| < c =⇒ |spanQ(E)| < c. Let us write H = {Kα : α < c}. By
transfinite induction over α < c we will construct a linearly independent subset
B0 of vectors in X over the field of rational numbers and a function F : B0 →
Y intersecting every member of H. In the step zero, we choose a nonzero
vector x0 such that (x0, F (x0)) ∈ K0. In the βth step, we choose an xβ ∈
dom(Kβ) \ spanQ({xα : α < β}) and some F (xβ) such that (xβ , F (xβ)) ∈ Kβ .
Let B0 = {xα : α < c}. Let us extend F to the whole X in the following way.
Let B be a Hamel basis for X over the field of rational numbers containing
the linearly independent set B0. Put F (x) = 0 for all x ∈ B \ B0 and put
F (Σn

i=1aixi) = Σn
i=1aiF (xi) for all ai ∈ Q, xi ∈ B, i ∈ [1, n] ∩ N, n ∈ N. Now,

the function F satisfies F (x+ u) = F (x) + F (u) and by Lemma 24 its graph is
connected and dense in X × Y .

4.2 A Nonseparably Connected Metric Space

We are now ready to show our example of a connected, not separably connected
metric space. It will soon be clear why we had to choose the real line for the
domain of our function with a connected dense graph to ensure that it does not
contain any nontrivial connected separable subsets and to conclude that it is
not locally connected at any point.

Theorem 28. There exists a nonseparable connected metric space M of size c
with the following properties:

(1) each separable connected subset of M is a singleton,

(2) M \ {p} is disconnected for every p ∈ M,

(3) M is not locally connected at any point.

Proof. Let Y = l∞ be the vector space of all bounded sequences of real numbers,
with the supremum norm. Clearly Y is nonseparable and of size c. By Theorem
27, we obtain a function M: R → Y whose graph is connected and dense in
R × Y . Let E be a connected subset of M containing two distinct points, say
a, b ∈ dom(E) with a < b. Then the set E0 = M ∩ ([a, b] × Y ) is contained
in E because otherwise E would be disconnected, separated by (−∞, c) × Y
and (c,∞) × Y for some c ∈ (a, b). Since E0 is dense in [a, b] × Y , which is
nonseparable, E is nonseparable too. That every point of M is a cut point —
M \ {p} is disconnected for every p ∈ M — follows naturally from the fact that
the domain of our function is the real line. Being discontinuous everywhere, M
cannot be locally connected at any point because of Theorem 4.

Thus we have constructed a connected metric space whose every nondegen-
erate connected subset is nonseparable. Other examples of such spaces are given
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in [10] and [11].

It still remains an open question whether there is a complete connected met-
ric space that fails to be separably connected. We tried to prove that every
complete connected metric space has to be separably connected but instead we
came up with the following weaker result.

Theorem 29. Let X be a reflexive Banach space. Suppose that A ⊂ X is con-
tained in the unit ball, connected in the norm topology (which implies that it is
also connected in the weak topology) and closed in the weak topology (which im-
plies that it is also closed in the norm topology). Then A is separably connected
in the weak topology.

Proof. Let a, b ∈ A be distinct points. We are going to construct a set T ⊂ A
with a, b ∈ T that is connected and separable in the weak topology.

Take any n ∈ N. Since A is connected, there are finitely many points
a0, a1, . . . , aα(n) ∈ A such that a0 = a, aα(n) = b and ‖ai − ai+1‖ < 1/n. Let
Tn =

⋃α(n)
i=1 ai−1 ai, where u v denotes the closed line segment between u and

v. Naturally, every Tn is a compact connected set contained in the unit ball.
These sets are also compact and connected in the weak topology. In particular,
they are closed in the weak topology.

Let H be the collection of all subsets of the unit ball that are closed in the
weak topology. Let G be the smallest topology on H containing sets of the form
{K ∈ H : K ∩ U 6= ∅} and {K ∈ H : K ⊂ U}, where U ⊂ X is open in the
weak topology. The topological space (H,G) is the Vietoris topology for the
unit ball with respect to the weak topology. Since X is reflexive, the unit ball is
compact in the weak topology and therefore (H,G) is compact — see [7]. Hence
we obtain a set T ∈ H which is a limit point — with respect to G — of the
sequence of sets Tn ∈ H. More precisely, T ∈

⋂
k∈N {Tn : n ≥ k} ⊂ H. Since the

unit ball, being compact Hausdorff, is normal in the weak topology, the set T
is connected in the weak topology — see [7].

We will argue by contradiction that a, b ∈ T . Suppose that a 6∈ T . Let
H = X \ {a}. Then the set H = {K ∈ H : K ⊂ H} is an open neighborhood of
T in H but no set Tn belongs to this neighborhood because they all contain a.
So a ∈ T because otherwise T would not be a limit point of the sequence Tn.
Similarly, b ∈ T .

In order to conclude that T is separable we will show that it is contained
in the separable subspace S = lin(

⋃
n∈N Tn). Suppose that there is a point

x ∈ T \ S. Since S is a closed linear subspace with x 6∈ S, by the Hahn-Banach
theorem, there is a continuous linear functional Λ ∈ X∗ such that Λ(x) = 1 and
Λ|S = 0. Let U = {z ∈ X : Λ(z) > 1/2}. Let U = {K ∈ H : K ∩ U 6= ∅}. Since
x ∈ T ∩U , U is an open neighborhood of T in H. Since T is a limit point of the
sequence Tn, there is an index k ∈ N such that Tk ∈ U and thus Tk ∩ U 6= ∅,
which yields a point z ∈ S ∩ U , implying both Λ(z) = 0 and Λ(z) > 1/2. This
contradiction shows that T ⊂ S and thus T is separable. It follows that T is
separable in the weak topology, too.
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Let us argue by contradiction that T ⊂ A. Suppose that there is a point
x ∈ T \A. Now, since A is closed in the weak topology, there is a set U containing
x and disjoint from A such that U =

⋂N
i=1{z ∈ X : |Λi(z) − Λi(x)| < ε} where

ε > 0 and Λ1, . . . ,ΛN ∈ X∗ with ‖Λi‖ = 1. From the way the sets Tn were
constructed it follows that there is a k ∈ N such that

(∀n ≥ k)(∀t ∈ Tn)(∃a ∈ A) ‖t− a‖ ≤ ε/2.

Let U ′ =
⋂N

i=1{z ∈ X : |Λi(z)− Λi(x)| < ε/2} and let V = {K ∈ H : K ∩ U ′ 6=
∅}. Since x ∈ T ∩U ′, V is a neighborhood of T and thus there is an index n ≥ k
such that Tn ∈ V, which yields a point t ∈ Tn ∩U ′. Choose a point a ∈ A with
‖t− a‖ ≤ ε/2. Since U ∩ A = ∅, a 6∈ U and thus |Λi(a) − Λi(x)| ≥ ε for some
i. Since ‖Λi‖ = 1, |Λi(t) − Λi(a)| ≤ ‖t− a‖ ≤ ε/2. Thus, |Λi(t) − Λi(x)| ≥
|Λi(a)−Λi(x)| − |Λi(t)−Λi(a)| ≥ ε− ε/2 = ε/2, and consequently t 6∈ U ′. This
contradiction shows that T ⊂ A.

4.3 Products of Functions with Closed Connected
Graphs

We are going to construct a complete separable connected metric space with
singletons being its only connected compact subsets — as a product of countably
many functions with closed connected graphs from the real line into a complete
metric space. For this purpose, we need to develop some tools to ensure that an
appropriately chosen sequence of functions with closed connected graphs again
has a closed connected graph.

Let us first recall the notion of the product of an arbitrary family of functions
defined on the same domain. Let X and {Yi}i∈I be arbitrary sets. Let fi : X →
Yi be a family of arbitrary functions indexed with i ∈ I. Let Y = Πi∈IYi be
the Cartesian product of the family {Yi}i∈I . Then the product of the family of
functions {fi}i∈I will be a function F : X → Y denoted as F =

⊗
i∈I fi and

defined by
F (x) = fi(x)i∈I

for every x ∈ X.
The following theorem establishes the basic facts concerning the product

of a family of functions from a topological space into topological spaces. In
particular, it serves to show that if all factor functions have closed graphs, then
their product also has a closed graph.

Theorem 30. Let X and {Yi}i∈I be arbitrary topological spaces. Let fi : X →
Yi be arbitrary functions. Endow Y = Πi∈IYi with the product topology. Let
F : X → Y be given by F =

⊗
i∈I fi. Then F is continuous at x0 if and only

if fi is continuous at x0 for each i ∈ I. Moreover, if fi has a closed graph for
each i ∈ I, then F has a closed graph.

Proof. The proof is elementary so we omit it.

24



The next two technical lemmas will be used to show that the product of
an appropriately selected family of functions with connected graphs also has a
connected graph.

Lemma 31. Let {Yi}i∈I be arbitrary topological spaces. Let fi : R → Yi be
functions with connected graphs such that fi is discontinuous only at one point
ai ∈ R with ai = aj ⇐⇒ i = j. Let Y = Π∞

i=1Yi be equipped with the
product topology. Let F : R → Y be given by F =

⊗
i∈I fi. Then (x, F (x)) ∈

F |(−∞,x) ∩ F |(x,+∞) for every x ∈ R.

Proof. By Theorem 30, F is continuous on R\{ai : i ∈ I}, so it suffices to write
the proof for a point of discontinuity, say x0 = aj . Notice that fi is continuous
at x0 whenever i 6= j. Let g =

⊗
i∈I\{j} fi. If we write Y −j = Πi∈I\{j}Yi, then,

by Theorem 30, the function g : X → Y −j is continuous at x0.
Take any open set U ⊂ Y with F (x0) ∈ U and any r > 0. We are done

as soon as we find a point a ∈ (x0 − r, x0) with F (a) ∈ U and a point b ∈
(x0, x0 + r) with F (b) ∈ U . We may assume — without loss of generality —
that U =

⋂
i∈I0
{h ∈ Y : h(i) ∈ Ui}, where Ui is open in Yi for each i ∈ I0 and

I0 is a finite subset of I. If j 6∈ I0, we may put Uj = Yj and assume that j ∈ I0.
In any case, fj(x0) ∈ Uj .

Since F (x0) ∈ U and g(x0) is, in fact, a subset of F (x0), it follows that
g(x0) belongs to

⋂
i∈I0\{j}{h ∈ Y −j : h(i) ∈ Ui}, which is an open subset of

Y −j . Since g is continuous at x0, there is a δ ∈ (0, r) such that fi(x) ∈ Ui

whenever i ∈ I0 \ {j} and x ∈ (x0 − δ, x0 + δ).
Since fj has a connected graph, there is a point a ∈ (x0− δ, x0) with fj(a) ∈

Uj and a point b ∈ (x0, x0 + δ) with fj(b) ∈ Uj . Thus F (a) ∈ U and F (b) ∈ U ,
which completes the proof.

The following lemma is about a function from the real line whose set of all
discontinuity points has smaller cardinality than the real line.

Lemma 32. Let Y be an arbitrary topological space. Let F : R→ Y be contin-
uous on E with |R \ E| < c. Assume that (x, F (x)) ∈ F |(−∞,x) ∩ F |(x,+∞) for
every x ∈ R . Then F has a connected graph.

Proof. Suppose that F is disconnected. Then it is the union of two disjoint
nonempty relatively closed sets F1 and F2. Let A = dom(F1) and B = dom(F2).
Then R = A ∪ B with A ∩ B = ∅ and the sets A,B are nonempty. Since R is
connected, A∩B 6= ∅. We will show that A∩B is contained in R\E to conclude
that — being a closed set — it has to be countable. Take any x ∈ A∩B. Then
there are two sequences an ∈ A and bn ∈ B converging to x. If x were a point
of continuity, it would follow that the point (x, F (x)) — being the limit of both
(an, F (an)) ∈ F1 and (bn, F (bn)) ∈ F2 — belongs to F1∩F2, which is impossible.
So the closed set A∩B is countable and thus has an isolated point, say x ∈ A∩B
with (x−r, x)∪(x, x+r) ⊂ R\(A∩B) = Int(R\A)∪Int(R\B) = Int(B)∪Int(A).
Now, the connected set (x, x+r) — covered by the union of two disjoint open sets
Int(A)∪Int(B) — must be contained in one of them. The same argument goes
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for (x−r, x). Let us assume — without loss of generality — that x ∈ A∩B. Then
it follows that (x− r, x) ⊂ B or (x, x+ r) ⊂ B. In either case, (x, F (x)) ∈ F |B
and, as before, it follows that (x, F (x)) ∈ F1 ∩ F2. This contradiction shows
that F has a connected graph.

4.4 Completely Metrizable Connected Puncti-
form Space

At the heart of our construction of a complete separable connected punctiform
space is a function from the real line into a complete metric space with a closed
connected graph and discontinuous only at one point. That such a function
exists is indeed lucky for our construction, because the condition of having a
closed connected graph is close to entailing continuity in certain natural contexts
— see Corollary 19 in the previous chapter.

Theorem 33. There exists a complete separable connected metric space D with
the following properties:

(1) each connected compact subset of D is a singleton,

(2) D \ {p} is disconnected for every p ∈ D,

(3) D is locally connected at each point of a dense set E with D \E countable.

Proof. The basic building block of this construction is a function from the real
line into some complete metric space with a closed connected graph discontinu-
ous at one point only. Any such function will do. For instance, let f : R→ Y be
as in Example 20, discontinuous only at 0. Notice that the graph of f is separa-
ble even if Y is not. Let Q = {a1, a2, . . .} with ai = aj if and only if i = j. Let
fi : R → Y be given by fi(x) = f(x− ai) for every i ∈ N. Let Y ′ = Y N with a
complete product metric. Let F : R→ Y ′ be given by F (x) = (f1(x), f2(x), . . .).
By Theorem 30, F has a closed graph and is continuous on E = R \ Q. By
Lemma 31 and Lemma 32, F has a connected graph. We claim that the graph
of F with the induced metric from R × Y ′ is the desired space. Clearly, F is
a complete connected metric space satisfying (2). To see that F is separable
let us embed it in the separable metric space Z = Π∞

i=1fi in the following way
(x, F (x))←→

(
(x, f1(x)), (x, f2(x)), . . .

)
.

Let E be a connected subset of F containing two distinct points a, b ∈
dom(E) with a < b. Then the set E0 = F ∩ ([a, b] × Y ′) is contained in E
because otherwise E would be disconnected, separated by (−∞, c) × Y ′ and
(c,∞)× Y ′ for some c ∈ (a, b). Choose a rational number q ∈ (a, b) — a point
of discontinuity of function F . Then, since the graph of F is closed, there is a
sequence (xn, F (xn)) ∈ E0 such that xn → q and F (xn) has no subsequential
limit. So E is not compact.

To prove (3) we make use of our characterization of continuity for functions
from the real line with connected graphs — Theorem 4 — which in our case

26



comes down to the observation that F is locally connected at (x, F (x)) if and
only if F is continuous at x.

The space D constructed above is a closed subset of (l2)N. According to
[1] the following three spaces are homeomorphic: (l2)N, l2, RN. Therefore our
completely metrizable connected punctiform space can in fact be thought of as a
closed subset of l2 or as a closed subset of RN. There is an old classical example
of a function f : R→ R with a Gδ connected punctiform graph, [6].

4.5 Extremal Functions

The concept of a separably connected space arose in the course of investigating
the question whether a continuous real-valued function — defined on a connected
space — having a local extremum everywhere (without knowing for a given point
whether it is a maximum or a minimum) has to be constant.

A positive answer is given for the class of separably connected metric spaces.
However, it is rather natural for a nonmetrizable connected space to entirely fail
to be separably connected and to admit a nonconstant continuous function with
a local extremum everywhere, so the question whether such functions must be
constant has to be limited to metric spaces.

At this point it might be useful to note briefly that if X is connected and
f : X → R is lower semicontinuous with a local maximum everywhere then it
must be constant because the set {x ∈ X : f(x) ≤ f(a)} is clopen and nonempty
for any a ∈ X. Therefore, in this context, it is intriguing to study only such
functions which have a local extremum at every point without knowing whether
it is a maximum or a minimum, which will be called extremal functions.

Naturally, in order to expect an extremal function to be constant one has to
impose some kind of connectedness condition on its graph, but not necessarily
continuity. In fact, we have shown that every extremal Darboux function defined
on a separably connected metric space has to be constant.

It is still an open question whether a Darboux (or continuous) extremal
function defined on a connected, but not separably connected, metric space must
be constant. Any theorem in this field must not include among its assumptions
both completeness and local connectedness because of the classical theorem
stating that every complete connected and locally connected metric space is
arcwise connected, and thus separably connected — see [3] section 6.3.11.

A space is Baire if all of its nonempty open subsets are of second category.
Let us call a space strongly Baire if it is Baire and all of its closed subsets
are Baire. We have proved that extremal continuous functions are constant on
connected and locally connected strongly Baire metric spaces. Although every
topologically complete space is strongly Baire, there exists a certain separable
connected and locally connected strongly Baire metric space which is not topo-
logically complete.
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Let us begin with a simple example which immediately brings the context into
metric spaces.

Example 34. There is a ”very nice” nonmetrizable compact connected linearly
ordered topological space X, which is not separably connected, and a continuous
nonconstant function f : X → R with a local extremum everywhere.

Proof. Endow X = [0, 1]× [2, 3] with the linear lexicographical order and with
the order topology. The end points of X, namely (0, 2) and (1, 3), cannot be
contained in a separable connected subset of X, because such a connected set
would have to be the whole X, which is nonseparable, as the open intervals
](x, 2), (x, 3)[ indexed with x ∈ [0, 1] form an uncountable family of disjoint
open nonempty sets. Let f : X → R be given by f(x, y) = x. Then f is a
continuous nonconstant function with a local extremum at every point.

The following theorem, combined with the fact that separable metric spaces
are second countable, constitutes the core of the argument that on a separably
connected metric space a Darboux function with a local extremum everywhere
has to be constant.

Theorem 35. Let X be a second countable space. Assume that f : X → R has
a local extremum everywhere. Then f(X) is countable.

Proof. For any open set U ⊂ X let us write

max(U) = {x ∈ U : f(z) ≤ f(x) for all z ∈ U},

min(U) = {x ∈ U : f(z) ≥ f(x) for all z ∈ U}.

Notice that f(max(U)) and f(min(U)) are singletons or empty. Let U1, U2, . . .
be a countable basis. Since f has a local extremum everywhere,

X =
⋃
n∈N

max(Un) ∪min(Un).

Hence f(X) =
⋃

n∈N f(max(Un)) ∪ f(min(Un)) is a countable union of single-
tons.

Keeping the previous theorem in mind, we argue that Darboux extremal
functions are constant provided they are defined on spaces such that any two
points can be contained in a connected second countable subset. In the case of
metric spaces, we are talking about separable connectedness.

Theorem 36. Let X be a separably connected metric space. Let f : X → R be
a Darboux function with a local extremum everywhere. Then f is constant.

Proof. Take any two points a, b ∈ X. Since X is separably connected, there is
a separable connected set K ⊂ X with a, b ∈ K. Since K is metrizable, it is
second countable, and by Theorem 35, f(K) is countable. Since f is Darboux,
f(K) is connected. As a connected countable metrizable set, f(K) is a singleton,
so f(a) = f(b). Thus f is constant.
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What follows is an attempt at producing an alternative argument — with-
out recourse to separability — that continuous extremal functions defined on
connected metric spaces ought to be constant.

Theorem 37. Let (X, d) be a Baire metric space. Let f : X → R be a contin-
uous function with a local extremum everywhere. Then f is constant on some
ball. Moreover, f is locally constant on a dense open subset.

Proof. Let
∆max

r = {x ∈ X : (∀z ∈ B(x, r)) f(z) ≤ f(x)},

∆min
r = {x ∈ X : (∀z ∈ B(x, r)) f(z) ≥ f(x)}.

Notice that

∆max
r =

⋂
z∈X

{x ∈ X : d(x, z) ≥ r} ∪ {x ∈ X : f(z) ≤ f(x)}.

Hence, since f is continuous, the sets ∆max
r and ∆min

r are closed. Since f has
a local extremum everywhere, we can write the Baire space X as a countable
union of closed sets in the following way:

X =
⋃
n∈N

∆max
1/n ∪

⋃
m∈N

∆min
1/m.

So, there existN ∈ N, x0 ∈ X, r > 0 such that, say, B(x0, r) ⊂ ∆max
1/N . Assuming

that 2r < 1/N it is easy to see that f(B(x0, r)) ⊂ {f(x0)}.
Naturally, since X is Baire, we can repeat this argument for any open ball,

showing that f is locally constant on a dense open set.

In the following theorem, we assume that the domain is strongly Baire, which
is essentially weaker than topological completeness, even among connected and
locally connected metric spaces.

Theorem 38. Let X be a connected and locally connected metric space, whose
each closed subspace is Baire. Let f : X → R be a continuous function with a
local extremum everywhere. Then f is constant.

Proof. Let B =
⋃
{J ⊂ X : J is open and f |J is constant}. By Theorem 37,

B is dense. Let us argue by contradiction that B = X. Suppose that this is
not the case. Then the closed nonempty subset A = X \ B is a Baire space.
Hence by Theorem 37, there is an open set U ⊂ X and a point a ∈ A ∩ U
such that f(U ∩ A) = {f(a)}. Since X is locally connected, U can be assumed
to be connected. Since a 6∈ B, there is a point q ∈ U such that f(q) 6= f(a).
Since f is continuous and since B is dense, there is a point b ∈ B ∩U such that
f(b) 6= f(a). Let B0 =

⋃
{J : J is open and f(J) = {f(b)}}. Now we have the

following two claims concerning the set B0:

(1) (B0 \B0) ⊂ A,

(2) (B0 \B0) ∩ U 6= ∅.
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To show that (1) holds assume that there is a point z ∈ ((B0 \ B0)) \ A.
Then z ∈ B and we have an open set V such that z ∈ V and f(V ) = {f(z)}.
Furthermore, since z ∈ B0, f(z) = f(b), and thus V ⊂ B0 and consequently
z ∈ B0. But z 6∈ B0.

To show that (2) holds assume that (B0 \ B0) ∩ U = ∅. Then the set
U ∩ B0 = U ∩ B0 is clopen in U . It contains b but it doesn’t contain a. Since
a, b ∈ U and U is connected, this yields a contradiction.

From (1) ∧ (2) it follows that there is a point z ∈ (A ∩ U) ∩ B0. Hence
f(z) = f(a) and f(z) = f(b), but f(a) 6= f(b). This contradiction finally shows
that X = B.

Fix a point b ∈ B. Let B′ = Int({x ∈ X : f(x) = f(b)}). Naturally, b ∈ B′
and B′ is open. We will show that it is also closed. Take any x ∈ B′. Since
x ∈ B, there is an open set V containing x such that f(V ) = {f(x)}. Since
x ∈ B′, there is a point z ∈ V ∩ B′. Hence f(z) = f(x) = f(b). In effect,
f(V ) = {f(b)} and thus x ∈ B′. We showed that B′ ⊂ B′. So B′ is a nonempty
clopen subset of the connected space X. Hence X = B′ and f is constant.

Let us show that there exists a connected, locally connected strongly Baire
metric space that is not topologically complete. We are going to use the fact
that every separable topologically complete space with no isolated points con-
tains a compact set of size c. We will find it convenient to say that a subset
of a topological space is sprawled if it intersects every compact set of size c.
Moreover, if both A and X \A are sprawled in X, then we will say that A is a
Bernstein subset of X — in conformance with existing terminology. Naturally,
a Bernstein subset of a separable complete metric space with no isolated points
is not topologically complete. We will show that any subset that is sprawled
in a separable complete metric space with no isolated points is strongly Baire.
It only remains to realize that a Bernstein subset of the Euclidean plane is
connected and locally connected.

Let X be a separable complete metric space with no isolated points and
let K be sprawled in X. To show that K is strongly Baire we consider an
arbitrary relatively closed subset K0 of K and argue that K0 is Baire. Let
K2 = {x ∈ K0 : x is an isolated point of K0}. Let K1 = K0 \K2. K2 is open
in K0, hence K1 is closed in K0. Thus K1 is closed in K and has no isolated
points. Let us write K1 = K ∩ F , where F = K1 = CloX(K1). So F is closed
in X and has no isolated points. Thus F is separable complete with no isolated
points. Let G0 be an arbitrary nonempty relatively open subset of K1. Then
G0 = K1 ∩G, for some open subset G of X. Now, the set F ∩G is open in F ,
hence F ∩G is topologically complete with no isolated points. Let An ⊂ K1 be
an arbitrary sequence of sets which are nowhere dense in K1. Then they are
nowhere dense in F , because K1 ⊂ F . Actually, they are also nowhere dense
in F ∩G. Therefore the set A =

⋃
n CloF∩G(An) has empty interior in F ∩G,

because F ∩G is Baire. It follows that (F ∩G)\A is a dense Gδ subset of F ∩G
with no isolated points. Now, since (F ∩G) \ A is topologically complete with
no isolated points, it contains a compact set of size c, say P ⊂ (F ∩G)\A. Since
K is sprawled in X, there is a point z ∈ K ∩ P ⊂ (K ∩ F ∩ G) \ A = G0 \ A,
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which means that G0 is not of first category in K1. Thus we showed that K1

is Baire. Since K2 is a discrete space, K0 = K1 ∪K2 is Baire, completing the
proof that K is strongly Baire.
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Appendix A

Jelinek’s Discontinuous
Function with a Closed
Connected Graph

A.1 Construction of The Graph

Demarcating the Domain

We are going to need two functions a, r with the following properties:

1. 0↙ a(n) as n→∞

2. a(k1, k2, ..., kN )↙ a(k1, k2, ..., kN , n) as n→∞

3. 0 < r(k1, . . . , kN ) < min

{
1
k1
, . . . ,

1
kN
,

1
2N

}
4. 0 < a(n+ 1)− r(n+ 1) < a(n+ 1) + r(n+ 1) <
< a(n)− r(n) < a(n) + r(n) < 1/2

5. a(k1, . . . , kN ) <
< a(k1, . . . , kN , n+ 1)− r(k1, . . . , kN , n+ 1) <
< a(k1, . . . , kN , n+ 1) + r(k1, . . . , kN , n+ 1) <
< a(k1, . . . , kN , n)− r(k1, . . . , kN , n) <
< a(k1, . . . , kN , n) + r(k1, . . . , kN , n) <
< a(k1, . . . , kN ) + r(k1, . . . , kN )/2.

for every n,N ∈ N and every k1, k2, ..., kN ∈ N.

For a = a(k1, k2, ..., kN ) and r = r(k1, k2, ..., kN ) define

U(k1, k2, ..., kN ) =
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((a− r, r)× (r, 2−N + r))∪ ({a} × (2−N , 2−N + r))∪ ((a, a+ r)× (0, 2−N + r)).

Notice that
z ∈ U(k1, . . . , kN )⇒ dist(z, δ(U(k1, . . . , kN )) ≤ r(k1, . . . , kN ).

Let W = (0, 1)2 \
∞⋃

n=1

U(n).

Let W (k1, ..., kN ) = U(k1, ..., kN ) \
∞⋃

n=1

U(k1, ..., kN , n).

Let A∗ = { (a(k1, ..., kN ), y) : N, k1, ..., kN ∈ N ∧ 0 < y ≤ 2−N }.
Let K = δ([0, 1]2). Let A = {(k1, ..., kN ) : N, k1, k2, ..., kN ∈ N}. Then

W ∪
⋃
a∈A

W (a) = (0, 1)2.

Definition of the Function

We are going to define a function f : [0, 1]2 → [0,∞) in the following way. Let
f(1, y) = f(x, 0) = f(x, 1) = 1 for x, y ∈ [0, 1] and let

f(0, y) = 1/y for y ∈ (0, 1].

For (a, y) ∈ A∗ let
f(a, y) = 1/y.

For (x, y) ∈W \A∗ let

f(x, y) =
1

dist( (x, y), δ([0, 1]2) )
.

Notice that
((0, 1)2 \W ) \A∗ =

⋃
a∈A

W (a) \A∗,

where {W (a) : a ∈ A} is a family of pairwise disjoint sets.

For (x, y) ∈W (k1, ..., kN ) let

f(x, y) =
1

dist( (x, y), δ(U(k1, ..., kN )) )
.

This definition is correct because the sets U(. . .) are open.

We will show that this function f : [0, 1]2 → [0,∞) has a closed connected
graph. It can be extended to the whole plane by putting

f(x, y) =

{
f(−x, y), (x, y) ∈ [−1, 0]× [0, 1],
1 (x, y) 6∈ [−1, 0]× [0, 1].
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A.2 The graph is closed

We will split the domain of the function into several kinds of sets and for each
kind we will provide a separate proof that the graph is closed:

[0, 1]2 = K ∪W ∪
⋃
a∈A

Wa =

= K ∪A∗ ∪ Int(W ) ∪
∞⋃

n=1

δ(U(n)) ∪
⋃
a∈A

[Int(Wa) ∪
∞⋃

n=1

δ(U(k(a), n)]

= K ∪A∗ ∪ Int(W ) ∪
⋃
a∈A

Int(Wa) ∪
⋃
a∈A

δ(Ua).

If (xn, yn)→ (x, 0) with yn > 0 then f(xn, yn) = y−1
n or f(xn, yn) = dist(. . .)−1,

in which case dist(. . .) ≤ yn. In any case f(xn, yn) ≥ y−1
n and so f(xn, yn)→∞.

Hence the graph of f is closed at every point (x, 0). It is quite easy to see that
the graph is closed at each point in [0, 1]× {1} ∪ {1} × [0, 1].

Let (x, y) be an arbitrary point in A∗: x = a(k1, . . . , kN ) and 0 < y ≤ 2−N . We
will examine all possible sequences (xn, yn) converging to (x, y):

1. if (xn, yn) ∈ A∗ then f(xn, yn) = yn
−1 → y−1 = f(x, y),

2. if (xn, yn) ∈W (k1, . . . , kN ) \A∗ then
f(xn, yn) = dist( (x, y), δ(U(k1, ..., kN )) )−1 = |xn − x|−1 →∞,

3. if (xn, yn) ∈W (k1, . . . , kN , kN+1(n), . . .) then
f(xn, yn) = dist( (xn, yn), δ(U(k1, ..., kN , kN+1(n), . . .)) )−1

≥ r(k1, . . . , kN , kN+1(n), . . .)−1 ≥ kN+1(n)→∞,

4. if (xn, yn) ∈W or (xn, yn) ∈W (k1, . . . , kN−1) then f(xn, yn)→ f(x, y).

Hence the graph of f is closed at every point in A∗. Analogously, we convince
ourselves that the graph is closed at every point (0, y). Thus the graph is closed
at every point in K ∪ A∗. Furthermore, if z ∈ Int(W ) ∪

⋃
a∈A Int(Wa) then f

is clearly continuous at z, hence closed.

Let z ∈ δUa \ A∗ for some a ∈ A. We will examine all possible sequences
zn converging to z. If zn ∈ Ua then f(zn) = dist(zn, δUa)−1 → ∞, and if
zn 6∈ Ua then f(zn) → f(z). Hence the graph is closed at z. Thus we have
completed the proof that the graph of f is closed.

34



A.3 The graph is connected

The proof that the graph of f is connected is based on the following scheme

1. [0, 1]2 = K ∪W ∪
⋃

a∈AWa

2. Gr(f |K) ∪Gr(f |W ) is connected

3. Gr(f |W ) ∪Gr(f |W (n)) is connected

4. Gr(f |W (k1,...,kN )) ∪Gr(f |W (k1,...,kN ,n)) is connected

for every N ∈ N, every k1, . . . , kN ∈ N, and every n ∈ N.

Evidently, Gr(f |K) is connected. We will show that the setsGr(f |W ), Gr(f |W (k1,...,kN ))
are connected by pointing out that the sets W , W (k1, . . . , kN ) are connected
and proving that f restricted to any of these sets is continuous. Points (2)-(4)
will be proved by using the following lemma.

Lemma 39. If A,B are connected and A ∩B 6= ∅ then A ∪B is connected.

Notice that

Gr(f |K) 3 (0, 1/2, 2) = limn→∞(a(n), 1/2, 2),

(a(n), 1/2, 2) ∈ Gr(f |W ).

Hence
(0, 1/2, 2) ∈ Gr(f |K) ∩Gr(f |W ).

So Gr(f |K) ∪Gr(f |W ) is connected.
Similarly, we show that Gr(f |W ) ∪Gr(f |W (k1)) is connected for each k1 ∈ N:

Gr(f |W ) 3 (a(k1), 1/4, 4) = limn→∞(a(k1, n), 1/4, 4),

(a(k1, n), 1/4, 4) ∈ Gr(f |W (k1)).

Hence
(a(k1), 1/4, 4) ∈ Gr(f |W ) ∩Gr(f |W (k1)).

So Gr(f |W ) ∪ Gr(f |W (k1)) is connected. Thus points (2) and (3) have been
demonstrated and (4) can be done analogously. To complete the proof that
the graph of f is connected we still need to prove the continuity of f |W and
f |W (k1,...,kN ). We will skip f |W and focus on f |W (k1,...,kN ) because f |W can be
done analogously.

We are going to show that f restricted to W (k1, . . . , kN ) is continuous by using
the following lemma.

Lemma 40. If E,H are closed, g : E ∪ H → Y and g|E, g|H are continuous
then g is continuous.
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Let us define the two sets H and E as follows:

H =
∞⋃

n=1

{a(k1, . . . , kN , n)} × [a(k1, . . . , kN , n)− a(k1, . . . , kN ), 2−N ],

E = W (k1, . . . , kN ) \
∞⋃

n=1

Hn, where

Hn = {a(k1, . . . , kN , n)} × (a(k1, . . . , kN , n)− a(k1, . . . , kN ), 2−N ].

Notice that H is a relatively closed subset of W (k1, . . . , kN ). We will show that
each Hn is a relatively open subset of W (k1, . . . , kN ) in order to conclude that
E is a relatively closed subset of W (k1, . . . , kN ). Obviously, W (k1, . . . , kN ) =
E∪H. Notice that f |H(x, y) = y−1, hence f |H is continuous. We will show that
f |E(x, y) = dist( (x, y), δ(U(k1, ..., kN )) )−1 to conclude that f |E is continuous.
All of this put together implies that f restricted to W (k1, . . . , kN ) is continuous.
The reasoning above is made complete by the following claims and their proofs.

Claim 41. The set

Hn = {a(k1, . . . , kN , n)} × (a(k1, . . . , kN , n)− a(k1, . . . , kN ), 2−N ]

is a relatively open subset of W (k1, . . . , kN ).

Proof. Let us simplify notation as follows. Let a′ = a(k1, . . . , kN ).
Let a = a(k1, . . . , kN , n). Let r = r(k1, . . . , kN , n).
Let Wa = W (k1, . . . , kN ). Let Ua = U(k1, . . . , kN , n).
Let (a, y0) be an arbitrary element of Hn. Choose y′ so that a − a′ < y′ < y0.
Let G = (a − r, a + r) × (y′, y0 + r). Our proof will be finished as soon as we
show that G ∩Wa ⊂ Hn. Take any (x, y) ∈ G ∩Wa. Now, a − r < x < a + r.
Since (x, y) ∈Wa it follows that (x, y) 6∈ Ua. Notice that

r < a− a′ < y′ < y < y0 + r ≤ 2−N + r.

Now, if a − r < x < a then (x, y) ∈ (a − r, a) × (r, 2−N + r) ⊂ Ua. On the
other hand, if a < x < a+ r then (x, y) ∈ (a, a+ r)× (0, 2−N + r) ⊂ Ua. Thus
x = a. If y > 2−N then (x, y) ∈ {a}× (2−N , 2−N + r) ⊂ Ua. Thus y ≤ 2−N . So
(x, y) ∈ Hn.

The following proposition will be used to show that
f |E(x, y) = dist( (x, y), δ(U(k1, ..., kN )) )−1.

Claim 42. If 0 < y < a(k1, . . . , kN , n)− a(k1, . . . , kN ) then

y = dist( (a(k1, . . . , kN , n), y), δ(U(k1, . . . , kN )) ).

Proof. Let us simplify notation as follows.
Let a′ = a(k1, . . . , kN ). Let r′ = r(k1, . . . , kN ).
Let a = a(k1, . . . , kN , n). Let r = r(k1, . . . , kN , n).
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Let Ua′ = U(k1, . . . , kN ).
Recall that a− a′ < r′ < 2−N . Hence

0 < y <
r′ + 2−N

2
and 0 < y < 2−N .

Recall that a′ < a < a′ + r′/2. Considering the shape of the boundary of Ua′ ,
these three inequalities allow us to conclude that

dist((a, y), δ(Ua′)) = min{a− a′, y} = y.

Claim 43. f |E(x, y) =
1

dist( (x, y), δ(U(k1, . . . , kN )) )
.

Proof. Recall that E ⊂ W (k1, . . . , kN )). Hence, for (x, y) ∈ E \ A∗ — by the
definition of f — we have f |E(x, y) = dist( (x, y), δ(U(k1, . . . , kN )) )−1. Notice
that

E ∩A∗ =
∞⋃

n=1

{a(k1, . . . , kN , n)} × (0, a(k1, . . . , kN , n)− a(k1, . . . , kN )].

We finish this proof by referring to the previous claim.

A.4 The graph is not arcwise connected

Let L = f |{0}×(0,1/2]. Notice that f |K \ L is open in Gr(f). Hence

(1) f |K ∩ f \ f |K ⊂ L.

Let us choose some z0 ∈ f |K and z1 ∈ f \ f |K . If the graph of f were arcwise
connected then there would exist a continuous function h : [0, 1] → Gr(f) such
that h(0) = z0 and h(1) = z1. We will suppose that such a function exists and
obtain a contradiction, thus proving that the graph is not arcwise connected.
Let E = h([0, 1]). The set E has the following properties:

(2) E is bounded and connected,

(3) E ∩ f |K 6= ∅ and E \ f |K 6= ∅.

Moreover, we will show that

(4) E ∩ f |K ∩ E \ f |K 6= ∅.

Let us argue by contradiction. If E ∩ f |K ∩ E \ f |K = ∅, then E ∩ f |K ⊂
E \E \ f |K ⊂ E ∩ f |K . Hence E ∩ f |K = E \E \ f |K is a relatively closed and
relatively open subset of the connected set E. By (3), it is not empty and it is
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a proper subset of E. To obtain this contradiction we have used the fact that
f |K is a relatively closed subset of Gr(f). Now, putting (1) and (4) together
we obtain a point z such that

(5) z ∈ E ∩ f |K ∩ E \ f |K ∩ L.

Independently of the reasoning above, there exists a δ > 0 such that

(6) E ∩ f |(0,δ)×(0,1) ⊂ f |A∗

because otherwise the set E would not be bounded. From (5) and (6) it follows
that there exists a point (a, y) ∈ A∗ ∩ (0, δ) × (0, 1) with ((a, y), f(a, y)) ∈ E.
Furthermore, there exists an r > 0 such that a+ r < δ and

(7) A∗ ∩ [a, a+ r]× (0, 1) = A∗ ∩ (a− r, a+ r)× (0, 1).

By (6) and (7),

E ∩ f |[a,a+r]×(0,1/2] = E ∩ f |(a−r,a+r)×(0,1).

Notice that the set above is nonempty because it contains ((a, y), f(a, y)). More-
over, it is a relatively closed and relatively open proper subset of the connected
set E. This contradiction completes the proof.
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